Affiliation:
1. Electrical Engineering Department, Urmia University of Technology, Urmia 57166-17165, Iran e-mails: ;
Abstract
It is shown that brushless direct current (DC) motors (BLDCMs), which have found many useful applications in motion control areas, display chaotic behaviors. To avoid undesirable inherent oscillations of such DC motors, a control strategy should be adopted in the applications. So, the control problem of applied chaotic power systems is taken into account in this paper. Some important aspects of the design and implementation are considered to reach a suitable controller for the applications. In this regard, it is assumed that the system is fluctuated by unknown uncertainties and environmental noises. Additionally, a part of the system dynamics is supposed to be unknown in advance and the effects of nonlinear input saturation are fully taken into account. Then, a one input nonsmooth adaptive sliding mode controller is realized to handle the aforementioned issues. The proposed controller does not require any knowledge about the bounds of the system uncertainties and external fluctuations as well as about the parameters of the input saturation. The finite time convergence and robustness of the driven control scheme are mathematically proved and numerically illustrated using matlab simulations for DC motors.
Subject
Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献