Affiliation:
1. Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 94720
Abstract
Stability of a rotating disk under rotating, arbitrarily large damping forces is investigated analytically. Points possibly residing on the stability boundary are located exactly in parameter space based on the criterion that at least one nontrivial periodic solution is necessary at every boundary point. A perturbation technique and the Galerkin method are used to predict whether these points of periodic solution reside on the stability boundary, and to identify the stable region in parameter space. A nontrivial periodic solution is shown to exist only when the damping does not generate forces with respect to that solution. Instability occurs when the wave speed of a mode in the uncoupled disk, when observed on the disk, is exceeded by the rotation speed of the damping force relative to the disk. The instability is independent of the magnitude of the force and the type of positive-definite damping operator in the applied region. For a single dashpot, nontrivial periodic solutions exist at the points where the uncoupled disk has repeated eigenfrequencies on a frame rotating with the dashpot and the dashpot neither damps nor energizes these modes substantially around these points.
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献