Automatic Assembly Feature Recognition and Disassembly Sequence Generation

Author:

Sung Raymond C. W.1,Corney Jonathan R.1,Clark Doug E. R.2

Affiliation:

1. Department of Mechanical and Chemical Engineering, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom

2. Department of Mathematics, Heriot-Watt University, Edinburgh, EH14 4AS, United Kingdom

Abstract

This paper describes a system for the automatic recognition of assembly features and the generation of disassembly sequences. The paper starts by reviewing the nature and use of assembly features. One of the conclusions drawn from this survey is that the majority of assembly features involve sets of spatially adjacent faces. Two principle types of adjacency relationships are identified and an algorithm is presented for identifying assembly features which arise from “spatial” and “contact” face adjacency relationships (known as s-adjacency and c-adjacency respectively). The algorithm uses an octree representation of a B-rep model to support the geometric reasoning required to locate assembly features on disjoint bodies. A pointerless octree representation is generated by recursively sub-dividing the assembly model’s bounding box into octants which are used to locate: 1. Those portions of faces which are c-adjacent (i.e. they effectively touch within the tolerance of the octree). 2. Those portions of faces which are s-adjacent to a nominated face. The resulting system can locate and partition spatially adjacent faces in a wide range of situations and at different resolutions. The assembly features located are recorded as attributes in the B-rep model and are then used to generate a disassembly sequence plan for the assembly. This sequence plan is represented by a transition state tree which incorporates knowledge of the availability of feasible gripping features. By way of illustration, the algorithm is applied to several trial components

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3