Comparison of DDES and URANS for Unsteady Tip Leakage Flow in an Axial Compressor Rotor

Author:

Liu Yangwei1,Zhong Luyang2,Lu Lipeng1

Affiliation:

1. National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering; Collaborative Innovation Center of Advanced Aero-Engine, Beihang University, Beijing 100191, China e-mail:

2. National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191, China e-mail:

Abstract

Tip leakage vortex (TLV) has a large impact on compressor performance and should be accurately predicted by computational fluid dynamics (CFD) methods. New approaches of turbulence modeling, such as delayed detached eddy simulation (DDES), have been proposed, the computational resources of which can be reduced much more than for large eddy simulation (LES). In this paper, the numerical simulations of the rotor in a low-speed large-scale axial compressor based on DDES and unsteady Reynolds-averaged Navier–Stokes (URANS) are performed, thus improving our understanding of the TLV dynamic mechanisms and discrepancy of these two methods. We compared the influence of different time steps in the URANS simulation. The widely used large time-step makes the unsteadiness extremely weak. The small time-step shows a better result close to DDES. The time-step scale is related to the URANS unsteadiness and should be carefully selected. In the time-averaged flow, the TLV in DDES dissipates faster, which has a more similar structure to the experiment. Then, the time-averaged and instantaneous results are compared to divide the TLV into three parts. URANS cannot give the loss of stability and evolution details of TLV. The fluctuation velocity spectra show that the amplitude of high frequencies becomes obvious downstream from the TLV, where it becomes unstable. Last, the anisotropy of the Reynolds stress of these two methods is analyzed through the Lumley triangle to see the distinction between the methods and obtain the Reynolds stress. The results indicate that the TLV latter part in DDES is anisotropic, while in URANS it is isotropic.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3