Affiliation:
1. Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853
Abstract
The nonsynchronous motion of a rigid rotor-squeeze film damper system was investigated. This research classifies the phenomenon of the system with perfectly preloaded centering springs, reveals its existence conditions, and analyzes the system’s topological structures associated with the phenomenon. When the centering springs of the system do not perfectly balance the gravity load, a unidirectional gravitational residual is resulted. This research also studied the effect of the gravitational residual on the system’s behavior and the degree of stability for the various topological structures of the corresponding autonomous system. It shows that the residual improves the performance of the system because it either suppresses the nonsynchronous orbit of the system or changes it into various subharmonic orbits. This research shows that though the squeeze film damper system is inherently stable, it can have some undesirable nonsynchronous behavior for a wide range of system parameters.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献