New Developments in the Theory of the Metal-Cutting Process: Part I. The Ploughing Process in Metal Cutting

Author:

Albrecht P.1

Affiliation:

1. Physical Research Department, The Cincinnati Milling Machine Company, Cincinnati, Ohio

Abstract

Revelation of the significance of “ploughing” in the metal-cutting process, which occurs because of the finite sharpness of the cutting edge, leads to a better understanding of the mechanics of the metal-cutting process. The concept of the ploughing force on the extreme cutting edge allows the development of a more complete force diagram which separates the ploughing force from the chip-tool interface force. Components of this more detailed force diagram have been verified experimentally. In terms of the new force diagram the real value of the coefficient of friction on the chip-tool interface has been found and the paradox of variation of the coefficient of friction with variation of rake angle explained. The paper also contributes to a better understanding of such events as the effect of cutting velocity upon tool forces, built-up edge, chip curling, and residual stresses in the work surfaces.

Publisher

ASME International

Subject

General Medicine

Cited by 229 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inconel 625 sustainable milling surface integrity and the dependence on alloy processing route;The International Journal of Advanced Manufacturing Technology;2024-01-17

2. Residual stresses and surface damage when micromachining 6061-T6 aluminum alloy;The International Journal of Advanced Manufacturing Technology;2024-01-17

3. The influence of cutting edge microgeometry on the broaching of Inconel 718 slots;Engineering Science and Technology, an International Journal;2023-12

4. Edge preparation methods for cutting tools: a review;Frontiers of Mechanical Engineering;2023-12

5. THE EFFECT OF BROACHING TOOL CUTTING EDGES POLISHING ON PROCESS FORCES AND TEMPERATURE;MM Science Journal;2023-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3