The Basics of Powder Lubrication in High-Temperature Powder-Lubricated Dampers

Author:

Heshmat H.1,Walton J. F.1

Affiliation:

1. Mechanical Technology Inc., Latham, NY 12110

Abstract

The objective of this investigation is to develop a novel powder-lubricated rotor bearing system damper concept for use in high-temperature, high-speed rotating machinery such as advanced aircraft gas turbine engines. The approach discussed herein consists of replacing a conventional oil lubrication or frictional damper system with a powder lubrication system that uses the process particulates or externally fed powder lubricant. Unlike previous work in this field, this approach is based on the postulate of the quasi-hydrodynamic nature of powder lubrication. This postulate is deduced from past observation and present verification that there are a number of basic features of powder flow in narrow interfaces that have the characteristic behavior of fluid film lubrication. In addition to corroborating the basic mechanism of powder lubrication, the conceptual and experimental work performed in this program provides guidelines for selection of the proper geometries, materials, and powders suitable for this tribological process. The present investigation describes the fundamentals of quasi-hydrodynamic powder lubrication and defines the rationale underlying the design of the test facility. The performance and the results of the experimental program present conclusions reached regarding design requirements as well as the formulation of a proper model of quasi-hydrodynamic powder lubrication.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental Investigations on the Effect of Surface Pocket in a Powder-Lubricated Journal Bearing on Friction and Vibration;Journal of Testing and Evaluation;2022-08-24

2. Effect of powder lubrication on wear characteristics of silicon nitride during sliding at high temperature;Materials Research Express;2022-04-01

3. Stability of rotor supported on powder lubricated journal bearings with surface pockets;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2020-09-09

4. Static and dynamic performance characteristics of powder lubricated symmetrical three-lobed bearing;Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology;2020-05-28

5. Performance Studies of Powder-Lubricated Journal Bearing Having Different Pocket Shapes at Cylindrical Bore Surface;Journal of Tribology;2018-01-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3