Buoyancy Driven Flow, Heat Transfer, and Entropy Generation Characteristics for Different Heater Geometries Placed in Cryogenic Liquid: A Computational Fluid Dynamics Study

Author:

Ade Someshwar Sanjay1,Rathore Sushil Kumar1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India

Abstract

Abstract The present work reports a 3D computational study of buoyancy-driven flow and heat transfer characteristics for a localized heater (analogous to superconductor) submerged in cryogenic liquid nitrogen in an enclosure. Seven different heater geometries are considered and the effect of heater geometry on flow and heat transfer characteristics is illustrated. The heater is generating heat at a constant rate (W/m3). Continuity, momentum, and energy equations are solved using the finite volume method. Liquid flow and heat transfer features are demonstrated with the help of velocity vector and temperature contours. Rayleigh number, average Nusselt number, the maximum vertical velocity of fluid flow, and the average velocity of fluid flow are the parameters that are considered for comparing seven different geometries of the heater. Additionally, an analysis of the entropy generation owing to the transfer of heat and friction due to fluid flow is reported. Furthermore, the dependency of average Nusselt number, maximum velocity of the fluid, entropy generation owing to transfer of heat, and fluid friction as a function of heat generation rate is illustrated graphically. The results of this study indicate that heater geometry can considerably affect the transfer of heat, fluid flow features, and entropy generation under the same heat generation rate in the heater. The highest average Nusselt number on the heater surface is obtained when heater geometry is circular, whereas the lowest value of total entropy generation in the domain is obtained when heater geometry is an equilateral triangle.

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3