Experimental Measurement of the Dynamic Force Response of a Squeeze-Film Bearing Damper

Author:

Vance John M.1,Kirton Alan J.2

Affiliation:

1. Dept. of Mechanical Engineering, University of Florida, Gainesville, Fla.

2. International Business Machine Corp., Lexington, Ky.

Abstract

An experimental study of the hydrodynamic force response of a squeeze-film bearing damper with end seals was carried out. Measurements of the pressure distribution about a journal constrained to move in a circular orbit were made for the journal orbit centered in the annular clearance and offset from the center of the annular clearance. The effects of cyclic flow in a radial inlet were studied for the case of the journal orbit centered in the annular clearance. For the off-center case the pressure distribution around the damper was measured for four different combinations of eccentricity, radial velocity, and angular velocity of the line of centers, chosen in such a way as to allow calculation of the four bearing coefficients defined by Tondl. The experimentally determined pressure distributions were numerically integrated to determine the force components of the squeeze film. The results are compared to the “long bearing” and the “short bearing” solutions of Reynolds’ equation. For the centered case, good agreement was found with the shape of the “long bearing” solution. Higher-than-predicted pressures and forces for light viscosity oil are explained by showing that this case is operating in the Taylor vortex flow regime. Similar calculations indicate that turbine dampers can also operate with vortex or turbulent flow.

Publisher

ASME International

Subject

General Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3