Thermal Spreading/Constriction From an Isothermal Source Into a Multilayer Orthotropic Semi-Infinite Flux Tube

Author:

Jain Ankur1

Affiliation:

1. Mechanical and Aerospace Engineering Department, University of Texas at Arlington , 500 W First St, Rm 211, Arlington, TX 76019

Abstract

Abstract Thermal spreading and constriction have been widely studied due to relevance in heat transfer across interfaces with imperfect contact and problems such as microelectronics thermal management. Much of the past work in this field addresses an isoflux source, with relatively lesser work on the isothermal source problem, which is of much relevance to heat transfer across rough interfaces. This work presents an analytical solution for thermal spreading/constriction resistance that governs heat flow from an isothermal source into a multilayer orthotropic semi-infinite flux tube. The mixed boundary condition due to the isothermal source is accounted for by writing a convective boundary condition with an appropriately chosen spatially-varying Biot number. A series solution for the temperature field is derived, along with a set of linear algebraic equations for the series coefficients. An expression for the nondimensional thermal spreading resistance is derived for Cartesian and cylindrical problems. It is shown that, depending on the values of various nondimensional parameters, heat transfer in either the thin film or the flux tube may dominate and govern the overall thermal spreading resistance. Results for a single-layered isotropic flux tube are derived as a special case of the general result, for which, good agreement with past work is demonstrated. An easy-to-use polynomial fit for this special case is presented. This work contributes a novel technique for solving mixed boundary problems involving an isothermal source, and may also help solve practical problems related to interfacial heat transfre and thermal management.

Publisher

ASME International

Reference44 articles.

1. Thermal Spreading and Contact Resistances;Bejan,2003

2. Review of Advances in Thermal Spreading Resistance Problems;AIAA J. Thermophys. Heat Transfer,2016

3. Constriction/Spreading Resistance Model for Electronics Packaging;Proc. ASME/JSME Therm. Eng. Conf.,1995

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3