COOLING PERFORMANCE OF ADDITIVELY MANUFACTURED PIN FINS IN STACKED MICROCHANNELS FOR THE INSIDE-OUT CERAMIC TURBINE SHROUD-COOLING RING

Author:

Dubois Patrick K.1,Landry-Blais Alexandre2,Gazzah Rym3,Sivic Sani3,Brailovski Vladimir4,Picard Mathieu5

Affiliation:

1. 3000 boul. de l'Université Parc Innovation, Pavillon P2 - 3IT Sherbrooke, QC J1K 0A5 Canada

2. Institut Interdisciplinaire d'Innovation Technologique (3IT) 3000 boulevard de l'Université Sherbrooke, QC J1K0A5 Canada

3. 3000 boul de l'Université P2 3IT Sherbrooke, QC J1K0A5 Canada

4. 1100, NOtre Dame Street West Montreal, QC H3C 1K3 Canada

5. 2500, boul. de l'Université Sherbrooke, QC J1K 2R1 Canada

Abstract

Abstract The Inside-out ceramic turbine (ICT), a novel microturbine rotor architecture, has an air-cooled ring which keeps its composite rotating structural shroud within operating temperature. The cooling ring must achieve a significant radial temperature gradient with a minimal amount of cooling. The cooling ring is made through additive manufacturing, which opens the design space to tailored cooling geometries. Additively manufactured pin fin heat transfer enhancers are explored in this work to assess whether they hold any significant performance benefit over current rectangular cross-section open channels. Experimental friction factors and Nusselt numbers were determined for small, densely-packed pin fins over an asymmetrical thermal load. Results indicate that pressure loss is similar to what can be expected for additively manufactured pin fins, whereas heat transfer is lower due to the extremely tight streamwise pin spacing, in both in-line and staggered pin configurations. A design study presented in this paper suggests that pin fins are beneficial to an ICT for reducing cooling mass flow rate up to 40 %, against an increase in cooling ring mass of roughly 50%.

Funder

Fonds de Recherche du Québec - Nature et Technologies

Natural Sciences and Engineering Research Council of Canada

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3