Free Vibration of Thin Spherical Shells

Author:

Bryan April1

Affiliation:

1. Mem. ASME No. 7 Jack Trace, Enterprise Chaguanas 500234, Trinidad and Tobago e-mail:

Abstract

This research introduces a new approach to analytically derive the differential equations of motion of a thin spherical shell. The approach presented is used to obtain an expression for the relationship between the transverse and surface displacements of the shell. This relationship, which is more explicit than the one that can be obtained through use of the Airy stress function, is used to uncouple the surface and normal displacements in the spatial differential equation for transverse motion. The associated Legendre polynomials are utilized to obtain analytical solutions for the resulting spatial differential equation. The spatial solutions are found to exactly satisfy the boundary conditions for the simply supported and the clamped hemispherical shell. The results to the equations of motion indicate that the eigenfrequencies of the thin spherical shell are independent of the azimuthal coordinate. As a result, there are several mode shapes for each eigenfrequency. The results also indicate that the effects of midsurface tensions are more significant than bending at low mode numbers but become negligible as the mode number increases.

Publisher

ASME International

Subject

General Engineering

Reference15 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3