Surface and Interface Effects on Torsion of Eccentrically Two-Phase fcc Circular Nanorods: Determination of the Surface/Interface Elastic Properties via an Atomistic Approach

Author:

Pahlevani Ladan1,Shodja Hossein M.2

Affiliation:

1. Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran

2. Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran; Department of Civil Engineering, Sharif University of Technology, P.O. Box 11155-9313, Tehran, Iran

Abstract

The effect of surface and interface elasticity in the analysis of the Saint–Venant torsion problem of an eccentrically two-phase fcc circular nanorod is considered; description of the behavior of such a small structure via usual classical theories cease to hold. In this work, the problem is formulated in the context of the surface/interface elasticity. For a rigorous solution of the proposed problem, conformal mapping with a Laurent series expansion are employed together. The numerical results well illustrate that the torsional rigidity and stress distribution corresponding to such nanosized structural elements are significantly affected by the size. In order to employ surface and interface elasticity, several key properties such as surface energy, surface stresses, and surface elastic constants of several fcc materials as well as interface properties of the noncoherent fcc bicrystals are derived in terms of Rafii-Tabar and Sutton interatomic potential function. For determination of the surface/interface parameters a molecular dynamics program, which uses the above-mentioned potential function, is developed. The calculated surface and interface properties are in reasonable agreement with the corresponding results in literature. Some applications of the given results can be contemplated in the design of micro-/nano-electromechanical systems.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3