Fidelity of the Estimation of the Deformation Gradient From Data Deduced From the Motion of Markers Placed on a Body That is Subject to an Inhomogeneous Deformation Field

Author:

Průša Vít1,Rajagopal K. R.2,Saravanan U.3

Affiliation:

1. Faculty of Mathematics and Physics, Charles University in Prague, Sokolovská 83, Praha, CZ 18675, Czech Republic e-mail:

2. Texas A&M University, Department of Mechanical Engineering, 3123 TAMU, College Station, TX 77843-3123 e-mail:

3. Department of Civil Engineering, Indian Institute of Technology Madras, Tamil Nadu, Chennai 600036, India e-mail:

Abstract

Practically all experimental measurements related to the response of nonlinear bodies that are made within a purely mechanical context are concerned with inhomogeneous deformations, though, in many experiments, much effort is taken to engender homogeneous deformation fields. However, in experiments that are carried out in vivo, one cannot control the nature of the deformation. The quantity of interest is the deformation gradient and/or its invariants. The deformation gradient is estimated by tracking positions of a finite number of markers placed in the body. Any experimental data-reduction procedure based on tracking a finite number of markers will, for a general inhomogeneous deformation, introduce an error in the determination of the deformation gradient, even in the idealized case, when the positions of the markers are measured with no error. In our study, we are interested in a quantitative description of the difference between the true gradient and its estimate obtained by tracking the markers, that is, in the quantitative description of the induced error due to the data reduction. We derive a rigorous upper bound on the error, and we discuss what factors influence the error bound and the actual error itself. Finally, we illustrate the results by studying a practically interesting model problem. We show that different choices of the tracked markers can lead to substantially different estimates of the deformation gradient and its invariants. It is alarming that even qualitative features of the material under consideration, such as the incompressibility of the body, can be evaluated differently with different choices of the tracked markers. We also demonstrate that the derived error estimate can be used as a tool for choosing the appropriate marker set that leads to the deformation gradient estimate with the least guaranteed error.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3