Axial Flutter Effects on the Axisymmetric Turbulent Boundary Layer Along Long Thin Circular Cylinders

Author:

Jordan Stephen A.1

Affiliation:

1. Naval Undersea Warfare Center, Newport, RI 02841 e-mail:

Abstract

Experimental observations of towed sonar arrays as characterized by long thin circular cylinders indicate transverse motions that are clearly identified by low-amplitudes, low-wavelengths, and low-frequencies. Although the cylinder length (L) to radius (a) is commonly large [L/a = O(103)] with high Reynolds numbers [O(104)], the corresponding length scale involving the average skin friction [CfL/a = O(10)] remains within the many experimental determinations of short to moderate length cylinders that experience oscillatory instabilities. Prior to the present investigation, any detrimental effects of these oscillatory instabilities on the thin cylinder flow physics that serve construction of the respective semi-empirical and semi-analytical models remained chiefly unknown. Herein, we began examining those turbulent statistics via fine-scale numerical simulations to critique the pragmatic adequacy of the representative design models. We were concerned in particular about the streamwise effects on the turbulent boundary layer (TBL), skin friction and wall pressure evolutions as well as the radial distributions of the leading normal and shear Reynolds stresses. Fortunately, no major deviations (within 10%) were discovered in the TBL statistics over a characteristic range of Reynolds numbers and TBL thicknesses as compared to the axisymmetric state. However, acute spikes (both subharmonics and harmonics) were detected in the wall pressure autospectra similar to that suspected in the towed cylinder experiments, which were conducted in large tow tanks and lake-type basins. These spikes are of paramount importance and should be explored further because they may lead to signal-to-noise ratios above acceptable limits.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3