Applicability of Equivalent Constant Amplitude Loading for Assessing the Fatigue Life of Pipelines and Risers and the Influence of Compressive Stress Cycles

Author:

Iranpour Mohammad,Taheri Farid1

Affiliation:

1. e-mail:  Department of Civil and Resource Engineering, Dalhousie University, 1360 Barrington Street, Halifax, NS, B3J 1Z1, Canada

Abstract

Fatigue life assessment of pipelines and risers is a complex process, involving various uncertainties. The selection of an appropriate fatigue model is important for establishing the inspection intervals and maintenance criteria. In offshore structures, the vortex-induced vibration (VIV) could cause severe fatigue damage in risers and pipelines, resulting in leakage or even catastrophic failure. The industry has customarily used simple fatigue models for fatigue life assessment of pipelines and risers (such as the Paris or Walker models); however, these models were developed based on constant amplitude loading scenarios. In contrast, VIV-induced stress-time history has a variable amplitude nature. The use of the simplified approach (which is inherently non conservative), has necessitated the implementation of large safety factors for fatigue design of pipelines and risers. Moreover, most of the experimental investigations conducted to date with the aim of characterizing the fatigue response of pipelines and risers have been done based on incorporation of constant amplitude loading (CAL) scenarios (which is unrealistic), or converting the variable amplitude loading (VAL) scenarios to an equivalent CAL. This study demonstrates that the use of such approaches would not be lead to accurate assessment of the fatigue response of risers subject to VIV-induced VAL. The experimental investigation performed in this study will also clarify the underlying reasons for the use of large safety factors by the industry when assessing the fatigue life of pipelines and risers. In addition, an experimental investigation was also conducted to highlight the influence of the compressive portion of VIV stress-time history on the fatigue life of such components. It is shown that the compressive stress cycles significantly influence the fatigue crack growth response of risers, and their presence should not be ignored.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3