Control of Laminar Pulsating Flow and Heat Transfer in Backward-Facing Step by Using a Square Obstacle

Author:

Selimefendigil Fatih1,Oztop Hakan F.2

Affiliation:

1. Assistant Professor Department of Mechanical Engineering, Celal Bayar University, Manisa 45140, Turkey e-mail:

2. Professor Department of Mechanical Engineering, Technology Faculty, Firat University, Elaz iğ 23119, Turkey e-mail:

Abstract

In the present study, laminar pulsating flow over a backward-facing step in the presence of a square obstacle placed behind the step is numerically studied to control the heat transfer and fluid flow. The working fluid is air with a Prandtl number of 0.71 and the Reynolds number is varied from 10 and 200. The study is performed for three different vertical positions of the square obstacle and different forcing frequencies at the inlet position. Navier–Stokes and energy equation for a 2D laminar flow are solved using a finite-volume-based commercial code. It is observed that by properly locating the square obstacle the length and intensity of the recirculation zone behind the step are considerably affected, and hence, it can be used as a passive control element for heat transfer augmentation. Enhancements in the maximum values of the Nusselt number of 228% and 197% are obtained for two different vertical locations of the obstacle. On the other hand, in the pulsating flow case at Reynolds number of 200, two locations of the square obstacle are effective for heat transfer enhancement with pulsation compared to the case without obstacle.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3