Affiliation:
1. Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801
2. School of Engineering, University of St. Thomas, St. Paul, MN 55105
Abstract
Microfiltration is an in-process recycling method that shows great potential to extend fluid life and reduce bacterial concentrations in synthetic and semisynthetic metalworking fluids. The primary problem facing the use of microfiltration is membrane fouling, which is the blocking of membrane pores causing reduced flux. In this paper a fluid dynamic model of partial and complete blocking in sintered alumina membranes is developed that includes hydrodynamic, electrostatic, and Brownian forces. Model simulations are employed to study the impact of electrostatic and Brownian motion forces on the progression of partial blocking. The simulations also examine the effects of fluid velocity, particle size, and particle surface potential. The inclusion of electrostatic and Brownian forces is shown to significantly impact the progression of the partial blocking mechanism. The addition of a strong interparticle electrostatic force is shown to eliminate the partial blocking build-up of small particles due to the presence of the repulsive forces between the particles. As a result, the time to complete blocking of the test pore was lengthened, suggesting that flux decline is reduced in the presence of electrostatic forces. The Brownian motion is shown to have a large impact at low fluid velocities. The most effective parameter set is a low fluid velocity, small particle sizes, high microemulsion surface potential, and high membrane surface potential.
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献