Laser-Based Fabrication of Carbon Nanotube–Metal Composites on a Polymer Substrate: Experimental Study and Characterizations

Author:

Kang Zheng1,Tripathi Jitendra Kumar2,Wang Muxuan1,Hassanein Ahmed2,Wu Benxin1

Affiliation:

1. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907

2. Center for Materials Under eXtreme Environment (CMUXE), School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907

Abstract

Abstract Flexible electronic devices have several advantages and multiple current or potential applications. However, the reliability and durability of their metal components (which often exist) may suffer from large and repeated strains during many applications. Carbon nanotube (CNT)-metal composite films that were laser-sintered on flexible substrates were shown to be very promising in addressing the reliability and durability issues. However, to the authors’ best knowledge, CNT–metal interfaces in a laser-sintered CNT–metal composite film on a polymer substrate and the composite–polymer interface have not been sufficiently characterized and understood. In this paper, CNT–silver composite films were produced on polyimide substrates by laser sintering, and the fabricated samples were characterized through scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. Under the conditions studied, it has been found that: (1) for the CNT–silver interfaces in the composite, a significant amount of Ag–C chemical bonds is unlikely to exist, and (2) for the composite–polyimide interface, mechanical interlocking is expected to play an important role in the interfacial adhesion, while a significant diffusion of silver into the polyimide substrate is not observed. Besides, chemical reactions have likely occurred around the interface, causing the formation of Ag2O due to the reaction between silver from the composite and oxygen (in a certain form) from the polyimide substrate.

Funder

National Science Foundation

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3