A Coarea Formulation for Grid-Based Evaluation of Volume Integrals

Author:

Uchytil Christopher1,Storti Duane1

Affiliation:

1. Department of Mechanical Engineering, University of Washington – Seattle, Box 352600, Seattle, WA 98195-2600

Abstract

Abstract We present a new method for computing volume integrals based on data sampled on a regular Cartesian grid. We treat the case where the domain is defined implicitly by an inequality, and the input data include sampled values of the defining function and the integrand. The method employs Federer’s coarea formula (Federer, 1969, Geometric Measure Theory, Grundlehren der mathematischen Wissenschaften, Springer) to convert the volume integral to a one-dimensional quadrature over level set values where the integrand is an integral over a level set surface. Application of any standard quadrature method produces an approximation of the integral over the continuous range as a weighted sum of integrals over level sets corresponding to a discrete set of values. The integral over each level set is evaluated using the grid-based approach presented by Yurtoglu et al. (2018, “Treat All Integrals as Volume Integrals: A Unified, Parallel, Grid-Based Method for Evaluation of Volume, Surface, and Path Integrals on Implicitly Defined Domains,” J. Comput. Inf. Sci. Eng., 18, p. 3). The new coarea method fills a need for computing volume integrals whose integrand cannot be written in terms of a vector potential. We present examples with known results, specifically integration of polynomials over the unit sphere. We also present Saye’s (2015, “High-Order Quadrature Methods for Implicitly Defined Surfaces and Volumes in Hyperrectangles,” SIAM J. Sci. Comput., 37) example of integrating a logarithmic integrand over the intersection of a bounding box with an open domain implicitly defined by a trigonometric polynomial. For the final examples, the input data is a grid of mixture ratios from a direct numerical simulation of fluid mixing, and we demonstrate that the grid-based coarea method applies to computing volume integrals when no analytical form of the implicit defining function is given. The method is highly parallelizable, and the results presented are obtained using a parallel implementation capable of producing results at interactive rates.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3