Fault Adaptive Mission Planning: Increasing Useful-Life and Reducing Downtime Through Condition-Based Decision-Making

Author:

DeStefano Charlie1,Jensen David1

Affiliation:

1. Department of Mechanical Engineering, University of Arkansas, 204 Mechanical Engineering Building, Fayetteville, AR 72701

Abstract

Abstract This paper presents a novel Fault Adaptive Mission Planning (FAMP) framework for complex systems aimed at increasing useful-life and reducing downtime through condition-based decision-making. A hallmark of complex systems is that they typically have access to multiple mission plans that allow their mission objectives to be accomplished in a variety of ways. In hopes of exploiting this characteristic, FAMP is the process of increasing a system's useful-lifespan by first determining how each potential mission plan affects the system's degradation differently, and then by implementing a planning strategy that utilizes this information to repeatedly recalculate a new mission plan as the system degrades. Fault-augmented physics models identify how component degradation will affect the system's current and future performance for a given mission plan. Then, at various degradation-based thresholds, new mission plans are installed such that whenever possible, the healthiest components are used more, or in different ways, than the more degraded components. This process promotes balanced degradation, preventing useful-life from being wasted and reducing downtime through synchronized maintenance schedules. This work expands the prognostics and health management paradigm by enabling life extension and maintenance reduction through real-time FAMP.

Funder

University of Arkansas

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference34 articles.

1. Robustness, Adaptivity, and Resiliency Analysis;Bankes,2010

2. FMEA for Manufacturing and Assembly Process;Nannikar,2012

3. Using FMECA to Design Sustainable Products;Herman,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Path Planning for Reducing Vibration Fatigue of Precision Equipment Transportation;Journal of Computing and Information Science in Engineering;2021-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3