A Note on the Effects of Local Blockage and Dynamic Tuning on Tidal Turbine Performance

Author:

Chen Lei1,Bonar Paul A.J.2,Vogel Christopher R.1,Adcock Thomas A.A.1

Affiliation:

1. Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, UK

2. School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK

Abstract

Abstract Numerical simulations are used to explore the potential for local blockage effects and dynamic tuning strategies to enhance the performance of turbines in tidal channels. Full- and partial-width arrays of turbines, modeled using the volume-flux-constrained actuator disc and blade element momentum theories, are embedded within a two-dimensional channel with a naturally low ratio of drag to inertial forces. For steady flow, the local blockage effect observed by varying the cross-stream spacing between the turbines is found to agree very well with the predictions of the two-scale actuator disc theory of Nishino and Willden (2012, “The Efficiency of an Array of Tidal Turbines Partially Blocking a Wide Channel,” J. Fluid Mech., 708, pp. 596–606). For oscillatory flow, however, results show that, consistent with the findings of Bonar et al. (2019, “On the Arrangement of Tidal Turbines in Rough and Oscillatory Channel Flow,” J. Fluid Mech., 865, pp. 790–810), the shorter and more highly blocked arrays produce considerably more power than predicted by two-scale theory. Results also show that, consistent with the findings of Vennell (2016, “An Optimal Tuning Strategy for Tidal Turbines,” Proc. R. Soc. A, 472(2195), p. 20160047), the “dynamic” tuning strategy, in which the tuning of the turbines is varied over the tidal cycle, can only produce significantly more power than a temporally fixed turbine tuning if the array has a large number of turbine rows or a large local blockage ratio. For all cases considered, trends are consistent between the two turbine representations but the effects of local blockage and dynamic tuning are found to be much less significant for the more realistic tidal rotor than for the idealized actuator disc.

Funder

Engineering and Physical Sciences Research Council

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3