Effective Random Field Characterization Considering Statistical Dependence for Probability Analysis and Design

Author:

Xi Zhimin1,Youn Byeng D.1,Hu Chao1

Affiliation:

1. University of Maryland, College Park, MD

Abstract

The Proper Orthogonal Decomposition (POD) method has been employed to extract the important signatures of the random field presented in an engineering product or process. Our preliminary study found that coefficients of the signatures are statistically uncorrelated but may be dependent. In general, the statistical dependence of the coefficients is ignored in the random field characterization for probability analysis and design. This paper thus proposes an effective approach to characterize the random field for probability analysis and design while accounting for the statistical dependence among the coefficients. The proposed approach is composed of two technical contributions. The first contribution is to develop a generic approximation scheme of random field as a function of the most important field signatures while preserving prescribed approximation accuracy. The coefficients of the signatures can be modeled as random field variables and their statistical properties are identified using the Chi-Square goodness-of-fit test. Second, the Rosenblatt transformation is employed to transform the statistically dependent random field variables into statistically independent random field variables. There exist so many transformation sequences when the number of random field variables becomes large. It was found that an improper selection of a transformation sequence may introduce high nonlinearity into system responses, which causes inaccuracy in probability analysis and design. Hence, a novel procedure is proposed for determining an optimal transformation sequence that introduces the least degree of nonlinearity to the system response after the Rosenblatt transformation. The proposed random field characterization can be integrated with one of the advanced probability analysis methods, such as the Eigenvector Dimension Reduction (EDR) method, Polynomial Chaos Expansion (PCE) method, etc. Three structural examples including a Micro-Electro-Mechanical Systems (MEMS) bistable mechanism are used to demonstrate the effectiveness of the proposed approach. The results show that the statistical dependence in random field characterization cannot be neglected for probability analysis and design. Moreover, it is shown that the proposed random field approach is very accurate and efficient.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. New Metrics for Validation of Data-Driven Random Process Models in Uncertainty Quantification;Journal of Verification, Validation and Uncertainty Quantification;2015-12-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3