A Virtual Machining Model for Sustainability Analysis

Author:

Shao Guodong1,Kibira Deogratias1,Lyons Kevin1

Affiliation:

1. National Institute of Standards and Technology, Gaithersburg, MD

Abstract

Sustainability has become a very significant research topic since it impacts many different manufacturing industries. The adoption of sustainable manufacturing practices and technologies offers industry a cost effective route to improve economic, environmental, and social performance. As a major manufacturing process, the machining system plays an important role for sustainable manufacturing on the factory floor. Therefore, technologies for monitoring, analyzing, evaluating, and optimizing the sustainability impact of machining systems are critical for decision makers. Modeling and Simulation (M&S) can be an effective tool for success of sustainable manufacturing through its ability to predict the effect of implementing a new facility, process without interrupting real production. This paper introduces a methodology that provides a traditional virtual Numerical Control (NC) machining model with a new capability — to quantitatively analyze the environmental impact of machining system based on Life Cycle Assessment (LCA). The objective of the methodology is to analyze the sustainability impacts of machining process and determine a better plan for improving the sustainable performance of machining system in a virtual environment before work orders are released to the shop floor. Testing different scenarios with simulation models ensures the best setting option available can be chosen. The virtual NC model provides the necessary data for this assessment. In this paper, a list of environmental impact indicators and their metrics has been identified, and modeling elements for sustainable machining have been discussed. Inputs and outputs of the virtual machining model for sustainable machining are described. A case study to experiment the proposed methodology is discussed.

Publisher

ASMEDC

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3