The Response of Infinite Strings and Beams to an Initially Applied Moving Force: Analytical Solution

Author:

Langlet André1,Safont Ophélie2,Renard Jérôme1

Affiliation:

1. Laboratoire PRISME/Dynamique des Matériaux et des Structures, 63 avenue du Maréchal, de Lattre de Tassigny, 18020 Bourges Cedex, France

2. Laboratoire PRISME/Dynamique des Matériaux et des Structures, 63 avenue du Maréchal, de Lattre de Tassigny, 18020 Bourges Cedex, France; Nexter Systems, 7 route de Guerry, 18000 Bourges France

Abstract

This paper presents the analytical solutions for bilaterally infinite strings and infinite beams on which a point force is initially applied, which then moves on the structure at a constant velocity. The solutions are sought by first applying the Fourier transform to the spatial coordinate dependence, and then the Laplace transform to the time variable of dependence, of the governing equations of motion. For the strings, it is necessary to distinguish between the case of a sonic load (a force moving at the phase velocity of transverse waves) and the cases of subsonic and supersonic loads. This is achieved by a suitable expansion in polynomial ratios of the Laplace transform, before going back to the original Fourier transform, whose inverse is obtained by exact calculations of the integrals over the complex infinite domain. For the Euler-Bernoulli beam, the same process leads to the closed-form (exact) formula for the displacement, from which the stress can be deduced. The displacement consists of the sum of two integrals: one representing the transient part, and the other, the stationary part of the solution. The stationary part is observed in the vicinity of the force for a very long travel time. The transient part is observed at a finite position coordinate, in relative proximity to the starting point of the moving force. For the Timoshenko beam, the final step in the calculation of the displacement and rotation, which requires a numerical evaluation of the integrals, leads to Fourier cosine and sine transforms. The response of the beam depends on the load velocity, relative to the two characteristic velocities: those of shear waves and longitudinal waves. This demonstrates that the transient parts of the solutions, in the Euler-Bernoulli beam or in the Timoshenko beam, are quasi identical. However, classical theory fails to forecast high frequency responses, occurring with velocities of the load exceeding twenty per cent of the bar velocity. For a velocity greater than the velocity of the shear waves, classical theory wrongly forecasts the response. In addition, according to the Euler-Bernoulli beam theory, the flexural waves are able to exceed the bar velocity, which is not realistic. If the load moves for a long period, the solution in the vicinity of the load tends towards a stationary solution. It is important to note that the solution to the stationary problem must be completed by the solution to the associated homogeneous system to represent the physical stationary solution.

Publisher

ASME International

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3