Personalized Fiber-Reinforcement Networks for Meniscus Reconstruction

Author:

Patel Jay M.1,Brzezinski Andrzej2,Ghodbane Salim A.3,Tarapore Rae2,Lu Tyler M.2,Gatt Charles J.3,Dunn Michael G.3

Affiliation:

1. Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901; Department of Biomedical Engineering, Rutgers-The State University of New Jersey, Piscataway, NJ 08854; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, PA 19104

2. Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901

3. Department of Orthopaedic Surgery, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ 08901; Department of Biomedical Engineering, Rutgers-The State University of New Jersey, Piscataway, NJ 08854

Abstract

Abstract The menisci are fibrocartilaginous tissues that are crucial to the load-sharing and stability of the knee, and when injured, these properties are compromised. Meniscus replacement scaffolds have utilized the circumferential alignment of fibers to recapitulate the microstructure of the native meniscus; however, specific consideration of size, shape, and morphology has been largely overlooked. The purpose of this study was to personalize the fiber-reinforcement network of a meniscus reconstruction scaffold. Human cadaveric menisci were measured for a host of tissue (length, width) and subtissue (regional widths, root locations) properties, which all showed considerable variability between donors. Next, the asymmetrical fiber network was optimized to minimize the error between the dimensions of measured menisci and predicted fiber networks, providing a 51.0% decrease (p = 0.0091) in root-mean-square (RMS) error. Finally, a separate set of human cadaveric knees was obtained, and donor-specific fiber-reinforced scaffolds were fabricated. Under cyclic loading for load-distribution analysis, in situ implantation of personalized scaffolds following total meniscectomy restored contact area (253.0 mm2 to 488.9 mm2, p = 0.0060) and decreased contact stress (1.96 MPa to 1.03 MPa, p = 0.0025) to near-native values (597.4 mm2 and 0.83 MPa). Clinical use of personalized meniscus devices that restore physiologic contact stress distributions may prevent the development of post-traumatic osteoarthritis following meniscal injury.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference56 articles.

1. Knee Pain and Mobility Impairments: Meniscal and Articular Cartilage Lesions;J. Orthop. Sports Phys. Ther.,2010

2. American Board of Orthopaedic Surgery Practice of the Orthopaedic Surgeon—Part II: Certification Examination Case Mix;J. Bone Jt. Surg. Am.,2006

3. Trends in Meniscus Repair and Meniscectomy in the United States, 2005-2011;Am. J. Sports Med.,2013

4. The Effect of Meniscal Tears and Resultant Partial Meniscectomies on the Knee Contact Stresses: A Finite Element Analysis;Comput. Methods Biomech. Biomed. Eng.,2014

5. Tibiofemoral Contact Mechanics After Serial Medial Meniscectomies in the Human Cadaveric Knee;Am. J. Sports Med.,2006

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3