Parameter Estimation of a Fluttering Aeroelastic System in the Transitional Reynolds Number Regime

Author:

Khalil Mohammad1,Sarkar Abhijit1,Poirel Dominique2

Affiliation:

1. Carleton University, Ottawa, ON, Canada

2. Royal Military College of Canada, Kingston, ON, Canada

Abstract

We report the parameter estimation results of a self-sustaining aeroelastic oscillator. The system is composed of a rigid wing that is elastically mounted on a rig, which in turn is fixed in a wind tunnel. For certain flow conditions, in particular dictated by the Reynolds number in the transitional regime, the wing extracts energy from the flow leading to a stable limit cycle oscillation. The basic physical mechanism at the origin of the oscillations is laminar boundary layer separation, which leads to negative aerodynamic damping. An empirical model of the aeroelastic system is proposed in the form of a generalized Duffing-van der Pol oscillator, whereby the linear and nonlinear aeroelastic terms are unknowns to be estimated. The model (input) noise process accounting for the amplitude modulation observed from experiments will also be estimated. We apply a Bayesian inference based batch data assimilation method in tackling this strongly nonlinear and non-Gaussian model. In particular, Markov Chain Monte Carlo sampling technique is used to generate samples from the joint distribution of the unknown parameters given noisy measurement data. The extended Kalman filter is utilized to obtain the conditional distribution of the model state given the noisy measurements. The parameter estimates for a third order generalized Duffing-van der Pol oscillator are obtained and marginal and joint probability density functions for the parameters will be presented for both a numerical model and a rigid wing that is elastically mounted on a rig in a wind tunnel.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3