Characterization and Optimization of a Three-Dimensional T-Type Micromixer for Convective Mixing Enhancement With Reduced Pressure Loss

Author:

Cortes-Quiroz Cesar A.1,Azarbadegan Alireza1,Zangeneh Mehrdad1

Affiliation:

1. University College London, London, UK

Abstract

Numerical simulations and experiments are used to evaluate the flow and mixing characteristics of a proposed convective 3-D T-type micromixer. The study presents a parametric study and performance optimization of this micromixer based on the variation of its geometry. To investigate the effect of design and operation parameters on the device performance, a systematic design and optimization methodology is applied; it combines Computational Fluid Dynamics (CFD) with an optimization strategy that integrates Design of Experiments (DOE), Surrogate modeling (SM) and Multi-Objective Genetic Algorithm (MOGA) techniques. The degree of mixing and the pressure loss in the mixing channel are the performance criteria to identify optimum designs at different Reynolds numbers (Re). The convective flow generated in the 3-D T-type micromixer drastically enhances mixing at Re > 100 by making the two fluids to roll up along the mixing channel. The resulting optimum designs are fabricated on polymethylmethacrylate (PMMA) by CNC micromachining. Experiments are carried out to visualize the streams of de-ionized water and aqueous fluorescein solution, by which the extent of mixing is determined, based on the standard deviation of fluorescein intensities on cross-section images. This study applies a systematic procedure for evaluation and optimization of a proposed 3-D T-mixer which has a configuration of channels that promote convective mixing since the two fluids come into contact. The methodology applied can also be used to efficiently modify and customize current micromixers.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3