Numerical Study on Droplet Formation in a Microchannel T-Junction Using the VOF Method

Author:

Zadeh Shobeir Aliasghar1,Radespiel Rolf1

Affiliation:

1. University of Braunschweig, Braunschweig, Germany

Abstract

The liquid-liquid two-phase flow in a T-junction was numerically investigated applying the VOF method and is compared with experimental results. The geometry was generated and meshed using the software Gridgen, and the corresponding equations for the CFD analysis were solved by using the commercial software Fluent (Fluent 12). The generated mesh consists of block-structured grids with hexahedral elements. Water-Glycerol solution (to-be-dispersed phase) and silicone oil (continuous phase) at room conditions are considered as fluids for this work. The effect of various parameters such as flow rate of the phases, width of the channel, viscosity and surface tension on the droplet formation are investigated and compared with available experimental results [1]. The breakup mechanism of droplets in various capillary-number regimes are explained. The numerical results of the length of the generated droplets as a function of the capillary number (varying the flow rate of the continuous phase) are in good agreement with the experimental values, which were measured using the same geometrical and physical properties. Further studies indicate that at a constant flow rate of the continuous phase, the droplet length rises strongly if the flow rate of the disperse phase increases, whereas the relative effects of the viscosity of the continuous phase, and the surface tension between phases on the length of droplets are moderate.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3