On the Propagation and Attenuation of Turbulent Fluid Transients in Circular Pipes

Author:

Wahba E. M.1

Affiliation:

1. Mechanical Engineering Department, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt e-mail:

Abstract

The attenuation of turbulent fluid transients in pipes is numerically investigated in the present study using one-dimensional (1D) and two-dimensional (2D) water hammer models. The method of characteristics (MOC) is used for the integration of the 1D model, while the semidiscretization approach and the fourth-order accurate Runge–Kutta method are used for the integration of the 2D model. The present results for a reservoir–pipe–valve system indicate that the damping of the transient is governed by a nondimensional parameter representing the ratio of the steady-state frictional head to the Joukowsky pressure head. Based on this parameter, the attenuation of the transient could be classified into three main categories. The first category is for values of the nondimensional parameter much smaller than unity, where attenuation of the transient is insignificant and line packing effects are negligible. The second category is for values of the parameter approaching unity, where the attenuation of the transient is significant and line packing results in a pressure rise at the valve that is slightly higher than the Joukowsky pressure rise. The third category is for values of the parameter much greater than unity, such as in long cross-country pipelines, where the transient is damped out within a few cycles and excessive line packing effects would result in a pressure rise at the valve that is significantly larger the Joukowsky pressure rise.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3