Revisiting the Discrete Element Method for Predictions of Flows Over Rough Surfaces

Author:

Aupoix B.1

Affiliation:

1. ONERA, The French Aerospace Laboratory, Toulouse F-31055, France e-mail:

Abstract

The discrete element method allows predicting the flow over rough surfaces in a way consistent with the physics, contrary to the classical equivalent sand grain approach, and without requiring the meshing of all the surface details. Up to now, its use was restricted to boundary layer solvers. This paper is an updated version of the work presented by the author 20 years ago (Aupoix, B., 1994, “Modelling of Boundary Layers Over Rough Surfaces,” Advances in Turbulence V: Proceedings of the Fifth European Turbulence Conference, R. Benzi, ed., Kluwer, Siena, Italy, pp. 16–20): the double-averaging technique, which is now a standard approach in porous media, was proposed to derive the flow equations without boundary layer assumptions. This allows extending the use of the discrete element method to Reynolds–Averaged Navier–Stokes (RANS) solvers. Differences with the standard discrete element method, i.e., different location of the blockage coefficients as well as terms omitted in the standard approach, mainly dispersive stresses and modifications of the turbulence model, are evidenced. The modeling of the different terms brought by the double-averaging procedure is discussed, in light of the knowledge gained both in the discrete element method and in the modeling of flows in porous media, pointing out some differences between the two situations. “High-resolution” RANS simulations are recommended to further improve the modeling.

Publisher

ASME International

Subject

Mechanical Engineering

Reference64 articles.

1. Strömungsgesetze in rauhen Rohren,1933

2. Laws of Flows in Rough Pipes,1937

3. The Many Faces of Turbine Surface Roughness;ASME J. Turbomach.,2001

4. Channel Flow Over Large Cube Roughness: A Direct Numerical Simulation Study;J. Fluid Mech.,2010

5. Parametric Forcing Approach to Rough-Wall Turbulent Channel Flow;J. Fluid Mech.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3