Analysis of Flangeability by Single-Stage SPIF and Press-Working in AA7075-O Sheet

Author:

Borrego Marcos1,Morales-Palma Domingo1,Vallellano Carpóforo2

Affiliation:

1. Camino de los Descubrimientos s/n Sevilla, Sevilla 41092 Spain

2. Escuela Tecnica Superior de Ingenieria Camino de los descubrimientos s/n Sevilla, 41092 Spain

Abstract

Abstract Recently, the research interest of hole-flanging has turned from conventional press-working to SPIF as a viable process for small- and medium-sized batches. Both technologies have been studied separately using different approaches and, therefore, most studies cannot be easily compared. Besides, some studies that measured the formability in SPIF using the classical Limiting Forming Ratio (LFR) showed conflicting results that still need to be clarified. Under these circumstances, the aim of this work is to provide a better understanding of the deformation process and the material formability in hole-flanging by critically comparing both forming processes. To this end, a series of experimental tests on AA7075-O sheet of 1.6-mm thickness by press-working and single-stage SPIF, using forming tools with different profile radii, are analysed. The material formability and flange geometry are compared and discussed in detail. The process limits are analysed by using both the Forming Limit Diagram (FLD) and the LFR. The failure modes by necking and fracture are clearly identified and assessed on both processes along with the influence of the bending induced by the tools during the flange forming. Results conclude that the LFR is not an adequate parameter to compare formability between processes other than press-working and, accordingly, two additional variables based on either the flange height or the average thickness reduction are proposed to successfully analyse flangeability.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3