Oxidative Stability of Algae Derived Methyl Esters

Author:

Bucy Harrison1,Marchese Anthony J.1

Affiliation:

1. Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523-1374

Abstract

Microalgae are currently receiving strong consideration as a potential biofuel feedstock to help meet the advanced biofuels mandate of the 2007 Energy Independence and Security Act because of its theoretically high yield (gal/acre/year) in comparison to current terrestrial feedstocks. For algal methyl ester biodiesel, fuel properties will be directly related to the fatty acid composition of the lipids produced by the given microalgae strain. Several microalgae species under consideration for wide scale cultivation, such as Nannochloropsis, produce lipids with fatty acid compositions containing substantially higher quantities of long chain-polyunsaturated fatty acids (LC-PUFA) in comparison to terrestrial feedstocks. It is expected that increased levels of LC-PUFA will be problematic in terms of meeting all of the current ASTM specifications for biodiesel. Moreover, these same LC-PUFA fatty acids, such as eicosapentaenoic acid (EPA: C20:5) and docosahexaenoic acid (DHA: C22:6) are known to have high nutritional value, thereby making separation of these compounds economically attractive. Given the uncertainty in the future value of these LC-PUFA compounds and the economic viability of the separation process, the goal of this study was to examine the oxidative stability of algal methyl esters with varying levels of EPA and DHA. Tests were conducted using a Metrohm 743 Rancimat with automatic induction period determination following ASTM D6751 and EN 14214 standards, which call for induction periods of at least 3 and 6 h, respectively. Tests were conducted at a temperature of 110 °C and airflow of 10 l/h with model algal methyl ester compounds synthesized from various sources to match the fatty acid compositions of several algae strains subjected to varying removal amounts of roughly 0% to 100% LC-PUFA. In addition, tests were also conducted with real algal methyl esters produced from multiple sources. The bis-allylic position equivalent (BAPE) was calculated for each fuel sample to quantify the level of unsaturation. The induction period was then plotted as a function of BAPE, which showed that the oxidative stability varied exponentially with the amount of LC-PUFA. The results suggest that removal of 45% to 65% of the LC-PUFA from Nannochloropsis-based algal methyl esters would be sufficient for meeting existing ASTM specifications for oxidative stability.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference31 articles.

1. Biodiesel From Microalgae;Chisti;Biotechnol. Adv.

2. Importance of Biodiesel as Transportation Fuel;Demirbas;Energy Policy

3. U.S. Biodiesel Board, 2009, “U.S. Biodiesel Production Capacity,” National Biodiesel Board.

4. Van Gerpen, J. H., Pruszko, R., Clements, D., and Shanks, B., 2006, “Building a Successful Biodiesel Business,” 2nd ed., Biodiesel Basics, Dubuque, IA.

5. Biodiesel: The Use of Vegetable Oils and Their Derivatives as Alternative Diesel Fuels;Knothe

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3