Experimental Investigation of Draft Tube Inlet Velocity Field of a Propeller Turbine

Author:

Gagnon Jean-Mathieu1,Aeschlimann Vincent1,Houde Sébastien1,Flemming Felix2,Coulson Stuart2,Deschenes Claire1

Affiliation:

1. LAMH, Laval University, Quebec, QC, G1V 0A6, Canada

2. Voith Hydro, Inc., 760 East Berlin Road, York, PA 17408

Abstract

The draft tube of reaction hydraulic turbines is subject to numerous investigations since it accounts for a significant portion of the energy recovery. But even with up-to-date computational fluid dynamics methodologies, simulating the draft tube flow remains highly challenging since it is a diverging swirling flow that may undergo flow separations and become dominated by unsteady secondary flows. Within the framework of a collaborative research project on the flow dynamics of a propeller turbine model, the flow at the inlet region of the draft tube was studied using 2D-laser Doppler velocimetry (2D-LDV). Measurements were used to detect and characterize the flow structures at three operating conditions: partial discharge, near best efficiency, and full-load conditions. The paper presents analysis based on phased-averaged velocity fields to yield information on fluctuations and dominant frequencies according to runner positions. The main features detected are the flow nonuniformity at the runner exit and the secondary flow structures associated with the runner hub wake. Those results are part of a larger database aimed at providing test cases for the validation of numerical simulation strategies.

Publisher

ASME International

Subject

Mechanical Engineering

Reference35 articles.

1. Discharge Imbalance Mitigation in Francis Turbine Draft-Tube Bays;Tridon;ASME J. Fluids Eng.

2. Recent Developments and New Challenges in the Use of Computational Fluid Dynamics at Hydro-Québec;Houde

3. Technical Report;Gebart

4. Technical Report;Engström

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3