Design and Experimental Validation of Nonlinear Infinite-Dimensional Adaptive Observer in Automated Managed Pressure Drilling

Author:

Hasan Agus1,Imsland Lars1,Hauge Espen2

Affiliation:

1. Department of Cybernetics Engineering, Norwegian University of Science and Technology, Trondheim 7134, Norway e-mail:

2. Research and Technology, Statoil ASA, Ranheim 7053, Norway e-mail:

Abstract

Utilizing flow rate and pressure data in and out of the fluid circulation loop provides a driller with real-time trends for early detection of well-control problems that impact the drilling efficiency. Due to limited number of sensors and time delay in processing and measurements, the flow rate and pressure along the annulus and drill string need to be estimated. This paper presents state and parameter estimations for infinite-dimensional models used in automated managed pressure drilling (MPD). The objective is to monitor the key process variables associated with process safety by designing a nonlinear adaptive observer that use the available information coming from the continuous-time online process measurements at the outlet of the well. The adaptive observer consists of a copy of the infinite-dimensional model plus output injection terms where the gain is computed analytically in terms of the Bessel function of the first kind. The design is tested using field data from a drilling commissioning test by Statoil ASA, Stavanger, Norway. The results show that the nonlinear adaptive observer estimates the flow rate and pressure of the drilling fluid accurately.

Funder

Statoil

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Boundary control of a coupled Burgers' PDE‐ODE system;International Journal of Robust and Nonlinear Control;2022-05-10

2. Adaptive eXogenous Kalman Filter for Actuator Fault Diagnosis in Robotics and Autonomous Systems;2019 7th International Conference on Control, Mechatronics and Automation (ICCMA);2019-11

3. Infinite-Dimensional Boundary Observer for Lithium-Ion Battery State Estimation;Energy Procedia;2017-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3