Preferable Workspace for Fatigue Life Improvement of Flexible-Joint Robots Under Percussive Riveting

Author:

Li Yuwen1,Guo Shuai2,Xi Fengfeng (Jeff)3

Affiliation:

1. Professor School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China e-mail:

2. Associate Professor School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China e-mail:

3. Professor Department of Aerospace Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada e-mail:

Abstract

This paper proposes a method to find the preferable workspace for fatigue life improvement of robots with flexible joints under percussive riveting. The development is motivated by the growing interest in using industrial robots to replace human operators for percussive riveting operations in aerospace assembly. A most important characteristic of robotic percussive riveting is the repetitive impacts generated by the percussive rivet gun. These impacts induce forced vibrations to the robot, and the joint shaft fatigue due to the resulting stress cycles must be prevented. This paper aims at finding the preferable workspace for fatigue life improvement of the robot, that is, the end-effector positions where the joint stresses are below the endurance limit. For this purpose, a structural dynamic model is established for the robot under percussive riveting. Then, an approximate analytical solution is formulated for the torsional stresses of the robot joints. Once the distributions of the stresses are obtained over the workspace, the preferable workspace for fatigue life improvement can be found by comparing the stresses with the endurance limit. Simulation studies are carried out for a mobile robot under percussive riveting. It is found that the dynamic response of the robot to the percussive riveting varies dramatically over the workspace. The method is then used to obtain the preferable positions of the robot end-effector for fatigue resistance.

Publisher

ASME International

Subject

Computer Science Applications,Mechanical Engineering,Instrumentation,Information Systems,Control and Systems Engineering

Reference23 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization of robot configurations for motion planning in industrial riveting;2021 20th International Conference on Advanced Robotics (ICAR);2021-12-06

2. Effect of angle deflection on deformation characteristic and mechanical property of electromagnetic riveted joint;The International Journal of Advanced Manufacturing Technology;2021-01-19

3. New development of the dynamic modeling and the inverse dynamic analysis for flexible robot;International Journal of Advanced Robotic Systems;2020-07-01

4. Experimental Results;Dissipative Systems Analysis and Control;2019-07-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3