Secondary Flow and Loss Distribution in a Radial Compressor With Untwisted Backswept Vanes

Author:

Sipos G.1

Affiliation:

1. Institute of Thermal Turbomachines and Power Plants, Technical University of Vienna, Vienna, Austria

Abstract

The unshrouded impeller and the vaneless diffuser of a single-stage radial compressor have been investigated at three flow rates. Three-dimensional velocities and pressures were measured at a tip speed of 84 m/s by an L2F-velocimeter, a slanted single hotwire probe, and piezoresistive pressure transducers. The measurements show that upstream of the blading the averaged meridional inlet flow angle is about 54 deg and a periodic variation of the meridional flow angle of about 25 deg occurs near the casing wall. Further, an inlet vortex in the clockwise direction appears and an initial whirl is induced. The specific work of the initial whirl corresponds to approximately 12 percent of the enthalpy losses between inlet pipe and diffuser outlet. In the beginning of the passage, the inlet vortex is suppressed and a solid body vortex in the counterclockwise direction can be observed. At the outlet, a heavy flow deceleration at the blade suction side with subsequent separation can be seen. Increasing the flow rate decreases the wake and causes a more uniform loss distribution in this area. The measured secondary vortex flow and rotary stagnation pressure gradients are compared with test results from impellers with inducer. The incidence of the investigated impeller is greater than that of the impellers with inducer, but the wake-jet outlet flows are very similar. Inlet losses could be reduced by improving incidence angles by matching the blade angles to the inlet flow angles. Smaller blade angles at the shroud would reduce or eliminate separation at the leading edge, and the resulting reduction in low-momentum fluid along the suction surface would help to avoid separation on that surface near the outlet.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3