Affiliation:
1. Beijing Key Laboratory of Advanced Manufacturing Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing 100124, China
Abstract
Abstract
Pre-operative correction trajectory planning is one of the important aspects of deformity correction. Avoidance of limb–frame interference is essential to verify the implementability of the preplanned correction trajectory, as well as to maintain the continuity and security of the correction strategy. In this study, a novel interference inspection algorithm is developed to investigate the interaction of the limb and hexapod frame in the treatment of lower limb deformities. The algorithm is built on a minimum distance model of the cone frustum busbar and cylindrical axis using vector analysis. A predefined trajectory is generated by Cartesian coordinate path control. Subsequently, an interference case is performed through numerical simulation and motion simulation. The results show that the conclusion of numerical simulation and motion simulation is consistent, which prove the feasibility of the algorithm. The results also show that it is possible to identify the riskiest struts, which are prone to interfere with the limb, and the riskiest positions. The proposed algorithm can support the clinician in selecting the suitable frame configuration to avoid interference. The algorithm solves the problem that the interference can only be judged by clinical observation in the clinic.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Beijing Municipality
Subject
Physiology (medical),Biomedical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献