Study of Protein Facilitated Water and Nutrient Transport in Plant Phloem

Author:

Jackie Sze Tsun-kay1,Dutta Prashanta2,Liu Jin1

Affiliation:

1. School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164

2. School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 e-mail:

Abstract

Biological systems use transporter proteins to create concentration gradients for a variety of purposes. In plant, sucrose transporter proteins play a vital role in driving fluid flow through the phloem by generating chemical potential. In this study, we investigate these nanoscale phenomena of protein directed active transport in a microscale biological system. We presented a mathematical model for protein facilitated sucrose loading considering six different states of the sucrose transporter protein. In addition, we developed a quasi-one dimensional transport model to study protein facilitated pumping mechanisms in plant phloem. Here we specifically study the influence of transporter protein reaction rates, apoplast proton concentration, membrane electrical potential, and cell membrane hydraulic permeability on flow through the phloem. This study reveals that increasing companion cell side deprotonation rate significantly enhances the sieve tube sugar concentrations, which results in much higher water transport. Lower apoplast pH increases the transport rate, but the flow control is less noticeable for a pH less than 5. A more negative membrane electrical potential difference will significantly accelerate the transporter proteins' ability to pump water and nutrients. Higher companion cell and sieve element membrane hydraulic permeability also promotes flows through the phloem; however, the flow difference is less noticeable at higher permeabilities when near typical plant cell membrane ranges.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,General Materials Science,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3