Tool Wear Monitoring and Alarm System Based on Pattern Recognition With Logical Analysis of Data

Author:

Shaban Yasser1,Yacout Soumaya1,Balazinski Marek2

Affiliation:

1. Department of Mathematics and Industrial Engineering, École Polytechnique, C. P. 6079, Succ. Centre-Ville, Montréal, QC H3C3A7, Canada e-mail:

2. Department of Mechanical Engineering, École Polytechnique, C. P. 6079, Succ. Centre-Ville, Montréal, QC H3C3A7, Canada e-mail:

Abstract

This paper presents a new tool wear monitoring and alarm system that is based on logical analysis of data (LAD). LAD is a data-driven combinatorial optimization technique for knowledge discovery and pattern recognition. The system is a nonintrusive online device that measures the cutting forces and relates them to tool wear through learned patterns. It is developed during turning titanium metal matrix composites (TiMMCs). These are a new generation of materials which have proven to be viable in various industrial fields such as biomedical and aerospace. Since they are quite expensive, our objective is to increase the tool life by giving an alarm at the right moment. The proposed monitoring system is tested by using the experimental results obtained under sequential different machining conditions. External and internal factors that affect the turning process are taken into consideration. The system's alarm limit is validated and is compared to the limit obtained when the statistical proportional hazards model (PHM) is used. The results show that the proposed system that is based on using LAD detects the worn patterns and gives a more accurate alarm for cutting tool replacement.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3