Fiber Orientation Control Related to Papermaking

Author:

Carlsson Allan1,Lundell Fredrik1,Söderberg L. Daniel2

Affiliation:

1. Department of Mechanics, School of Engineering Sciences, Royal Institute of Technology, SE-100 44 Stockholm, Sweden

2. STFI-Packforsk AB, SE-114 86 Stockholm, Sweden

Abstract

The orientation of fibers suspended in a shear flow flowing over a solid wall has been studied experimentally. The possibility to control this orientation with physical surface modifications, ridges, has also been studied. The fiber suspension was driven by gravity down a slightly inclined glass plate and a charge-coupled device camera was used to capture images of the fibers in the flow. Image analysis based on the concept of steerable filters extracted the position and orientation of the fibers in the plane of the image. From these data, the velocity of the fibers was determined. When viewing the flow from the side, the velocity of the fibers at different heights was measured and found to agree with the theoretical solution for Newtonian flow down an inclined plate. Moving the camera so that the flow was filmed from below, the orientation, and velocity of fibers in the plane parallel to the solid surface was determined. The known relationship between the velocity and the wall normal position of the fibers made it possible to determine the height above the plate for each identified fiber. Far away from the wall, the fibers were aligned with the flow direction in both cases. In a region close to the smooth plate surface the fibers oriented themselves perpendicular to the flow direction. This change in orientation did not occur when the surface structure was modified with ridges.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3