Burr Formation and Surface Quality in High Speed Micromilling of Titanium Alloy (Ti6Al4V)

Author:

Bajpai Vivek1,Kushwaha Ajay K.1,Singh Ramesh K.1

Affiliation:

1. Indian Institute of Technology Bombay, Mumbai, India

Abstract

Titanium and Ti alloys are popular materials used in aviation and biomedical field due to their excellent strength-to-weight ratio and corrosion resistance properties. Micromilling is a common mechanical machining process used in the production of microscale features. The micro-tool has very low stiffness and even small forces can lead to catastrophic tool failure. High speed micromachining can be used to address the issue because of lower chip loads at higher rotational speeds. Consequently, high speed micromilling can be used for micromachining of hard metals/alloys which are difficult to accomplish at lower speeds. Nowadays high speed micromilling is gaining popularity due to its high material removal rate and good surface finish. In many cases, the machined product does not need an additional finishing process. However, the burr formation in the mechanical machining process is the most important problem which becomes more critical for a microscale feature. Removal of micro-size burr is much more difficult than its macro counterpart. The current work is focused on the characterization of the burr formation in high speed micromilling. Influence of various process parameters, viz., spindle speed, feed rate, depth of cut, tool diameter and number of flutes of the micromilling tool has been analyzed on the burr size and on the quality of the machined surface via measuring the surface roughness.

Publisher

American Society of Mechanical Engineers

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3