Single-Passage Analysis of Unsteady Flows Around Vibrating Blades of a Transonic Fan Under Inlet Distortion

Author:

Li H. D.1,He L.1

Affiliation:

1. School of Engineering, University of Durham, U.K. DH1  3LE Durham

Abstract

Abstract Computations of unsteady flows due to inlet distortion driven blade vibrations, characterized by long circumferential wavelengths, typically need to be carried out in multi-passage/whole-annulus domains. In the present work, a single-passage three-dimensional unsteady Navier-Stokes approach has been developed and applied to unsteady flows around vibrating blades of a transonic fan rotor (NASA Rotor-67) with inlet distortions. The phase-shifted periodic condition is applied using a Fourier series based method, “shape-correction,” which enables a single-passage solution to unsteady flows under influences of multiple disturbances with arbitrary interblade phase angles. The computational study of the transonic fan illustrates that unsteady flow response to an inlet distortion varies greatly depending on its circumferential wavelength. The response to a long wavelength (whole-annulus) distortion is strongly nonlinear with a significant departure of its time-averaged flow from the steady state, while that at a short wavelength (two passages) behaves largely in a linear manner. Nevertheless, unsteady pressures due to blade vibration, though noticeably different under different inlet distortions, show a linear behavior. Thus, the nonlinearity of the flow response to inlet distortion appears to influence the aerodynamic damping predominantly by means of changing the time-averaged flow. Good agreements between single-passage solutions and multi-passage solutions are obtained for all the conditions considered, which clearly demonstrates the validity of the phase-shifted periodicity at a transonic nonlinear distorted flow condition. For the present cases, typical CPU time saving by a factor of 5–10 is achieved by the single-passage solutions.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3