Fatigue Crack Tip Plasticity Associated With Overloads and Subsequent Cycling

Author:

Lankford J.1,Davidson D. L.1

Affiliation:

1. Southwest Research Institute, San Antonio, Texas

Abstract

The plastic zones associated with single overloads of cyclically loaded specimens have been mapped using electron channeling patterns. The zones are asymmetric with respect to the crack tip, and are complex in shape. Crack retardation subsequent to an overload is closely related to the size and shape of the overload zone, but has no apparent relationship to the maximum zone dimension. Following an overload, cracks try to exit from the monotonic zone by moving toward the nearest elastic-plastic boundary. The size of the overload zone is predicted by a plane strain rather than plane stress relationship. The minimum retarded growth rate corresponds to an effective stress intensity factor no greater than the threshold value for Stage II growth. This is caused by crack closure, with minimal crack tip shear strains and an absence of crack tip opening and blunting. Since the crack growth rate quickly approaches the preoverload rate once the crack crosses the overload boundary, it appears that residual stress within the overload plastic zone is the key factor in governing crack retardation.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3