Transition and Mixing in the Shear Layer Produced by Tangential Injection in Supersonic Flow

Author:

Gilreath H. E.1,Schetz J. A.2

Affiliation:

1. Hypersonic Propulsion Group, Applied Physics Laboratory, The Johns Hopkins University, Silver Spring, Md.

2. Virginia Polytechnic Institute, Blacksburg, Va.

Abstract

The interaction between a viscous mixing layer induced by tangential injection, and an external supersonic flow field is considered experimentally and analytically. Both subsonic and supersonic injection are investigated. The experiments were performed at freestream Mach numbers of 2.85 and 4.19 using air as the injectant. The principal observations are in the form of spark schlieren photographs, interferograms, and wall pressure distributions. The experiments were arranged to cross Lin’s neutral stability boundary for parallel streams. Transition occurred in all cases, but an increase in stability was noted with either a decrease in the injectant Mach number or an increase in the Mach number of the external flow. Both of these results follow the trends predicted by the stability theory. For the supersonic injection cases, it was found that simple inviscid theory is sufficient to predict the overall interaction pattern between streams, when the ratio of initial boundary layer thickness to the injection slot height is small. However, when the injection is subsonic, the injectant initial conditions in terms of either pressure or Mach number at the slot exit are determined by the downstream viscous-inviscid interaction with the external supersonic flow. A simple one-dimensional theory is applied to this problem to enable prediction of the initial conditions.

Publisher

ASME International

Subject

General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effects of Feeding Mach Numbers on the Flowfield Structures of Supersonic Film Cooling;Journal of Thermophysics and Heat Transfer;2019-01

2. Boundary Layer Analysis, Second Edition;2011-08-12

3. References;Boundary Layer Analysis, Second Edition;2011-01

4. Tangential Injection from Overlaid Slots into a Supersonic Stream;Journal of Propulsion and Power;1997-01

5. Experimental transition investigation of a free-shear layer above a cavity at Mach 3.5;Journal of Propulsion and Power;1991-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3