Application of the Absolute Nodal Coordinate Formulation to Large Rotation and Large Deformation Problems

Author:

Shabana A. A.1,Hussien H. A.1,Escalona J. L.2

Affiliation:

1. Department of Mechanical Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL 60607-7022

2. Department of Mechanical Engineering, University of Seville, Av. Reina Mercedes s/n, 41012 Seville, Spain

Abstract

There are three basic finite element formulations which are used in multibody dynamics. These are the floating frame of reference approach, the incremental method and the large rotation vector approach. In the floating frame of reference and incremental formulations, the slopes are assumed small in order to define infinitesimal rotations that can be treated and transformed as vectors. This description, however, limits the use of some important elements such as beams and plates in a wide range of large displacement applications. As demonstrated in some recent publications, if infinitesimal rotations are used as nodal coordinates, the use of the finite element incremental formulation in the large reference displacement analysis does not lead to exact modeling of the rigid body inertia when the structures rotate as rigid bodies. In this paper, a simple non-incremental finite element procedure that employs the mathematical definition of the slope and uses it to define the element coordinates instead of the infinitesimal and finite rotations is developed for large rotation and deformation problems. By using this description and by defining the element coordinates in the global system, not only the need for performing coordinate transformation is avoided, but also a simple expression for the inertia forces is obtained. The resulting mass matrix is constant and it is the same matrix that appears in linear structural dynamics. It is demonstrated in this paper that this coordinate description leads to exact modeling of the rigid body inertia when the structures rotate as rigid bodies. Nonetheless, the stiffness matrix becomes nonlinear function even in the case of small displacements. The method presented in this paper differs from previous large rotation vector formulations in the sense that the inertia forces, the kinetic energy, and the strain energy are not expressed in terms of any orientation coordinates, and therefore, the method does not require interpolation of finite rotations. While the use of the formulation is demonstrated using a simple planar beam element, the generalization of the method to other element types and to the three dimensional case is straightforward. Using the finite element procedure presented in this paper, beams and plates can be treated as isoparametric elements.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3