A Manufacturing Oriented Single Point Search Hyper-Heuristic Scheme for Multi-Objective Optimization

Author:

Cao Pei1,Fan Zhaoyan2,Gao Robert3,Tang Jiong1

Affiliation:

1. University of Connecticut, Storrs, CT

2. Oregon State University, Corvallis, OR

3. Case Western Reserve University, Cleveland, OH

Abstract

Multi-objective optimization problems are frequently encountered in engineering analyses. Optimization techniques in practical applications are devised and evaluated mostly for specific problems, and thus may not be generally applicable when applications vary. In this study we formulate a probability matching based hyper-heuristic scheme, then propose four low-level heuristics which can work coherently with the single point search algorithm MOSA/R (Multi-Objective Simulated Annealing Algorithm based on Re-pick) towards multi-objective optimization problems of various properties, namely DTLZ and UF test instances. Making use of the domination amount, crowding distance and hypervolume calculations, the hyper-heuristic scheme could meet different optimization requirements. The approach developed (MOSA/R-HH) exhibits better and more robust performance compared to AMOSA, NSGA-II and MOEA/D as illustrated in the numerical tests. The outcome of this research may potentially benefit various design and manufacturing practices.

Publisher

American Society of Mechanical Engineers

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3