Flutter of Grouped Turbine Blades

Author:

Whitehead D. S.1,Evans D. H.2

Affiliation:

1. Inwoods, Bradford-on-Avon, Wilts., England

2. Westinghouse Electric Corporation, Orlando, FL

Abstract

An analysis is presented to predict flutter in a wheel of turbine blades which are connected together into a number of identical groups. The natural frequencies and mode shapes of a group are assumed to be known. The unsteady aerodynamic coefficients for free-standing blades are assumed to be known from an unsteady aerodynamic program, and FINSUP is used here. The work fed into the vibration by the aerodynamic forces is then calculated. This is illustrated by two examples of low pressure steam turbine blade rows GR-1 and GR-2. On GR-1 the three modes considered are all found to be stable, but on GR-2 the lowest frequency mode shows some instability. Tying the blades together in groups is found to be stabilizing. Blade response, measured by a Blade Vibration Monitor at two different installations, is shown for a range of operating conditions. The measured responses indicate the GR-1 blade is stable whereas the GR-2 blade shows, at the lowest frequency, high response that is dependent on turbine operating conditions.

Publisher

American Society of Mechanical Engineers

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3