Classification of Thermal Piping Loads Using Limit Load Analysis

Author:

George Shiju V. P.1,Seipp Trevor G.1,Morrison Shawn W.1

Affiliation:

1. Fluor Canada, Ltd., Calgary, AB, Canada

Abstract

Equipment nozzle loads essentially originate from sustained (gravity) sources and restraint of the free thermal displacement of the attached piping. A common practice has been to assume that these thermal piping loads develop only secondary stresses. That is, a 1.5Sm [2] check on membrane stress intensities arising from thermal piping loads is typically not performed. The key assumption used in support of this approach has been that these loads decay appreciably with local shell deformation such that the associated stresses are truly self-limiting in nature. This paper illustrates that this assumption may not be appropriate in all instances. A typical pressure vessel and piping configuration is examined. In this example, the associated stresses and deformations developed due to thermal piping loads resulted in significant deformation of the shell arrangement. In static evaluations of local stresses in shells, the ASME Code only offers two classifications that may be applied to stresses resulting from thermal piping loads: primary or secondary. Given these results it may be more reasonable to treat thermal piping load membrane stresses as being primary.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal Stress Analysis of a Tubesheet with a Welding Clad;Advanced Materials Research;2011-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3