Residual Strain and Joint Pressurization Maintain Collagen Tension for On-Joint Lumbar Facet Capsular Ligaments

Author:

Gacek Elizabeth1,Ellingson Arin M.2,Barocas Victor H.1

Affiliation:

1. Department of Biomedical Engineering, University of Minnesota – Twin Cities , Minneapolis, MN 55455

2. Divisions of Physical Therapy and Rehabilitation Science, Department of Rehabilitation Medicine, University of Minnesota – Twin Cities , Minneapolis, MN 55455

Abstract

Abstract Modeling the lumbar facet capsular ligament's (FCL) mechanical behavior under various physiological motions has often been a challenge due to limited knowledge about the on-joint in situ ligament state arising from attachment to the bone or other internal loads. Building on prior work, this study presents an enhanced computational model of the lumbar facet capsular ligament by incorporating residual strain and joint pressurization strain, factors neglected in prior models. Further, the model can predict strain and stress distribution across the ligament under various spinal motions, highlighting the influence of the ligament's attachment to the bone, internal synovial fluid pressurization, and distribution of collagen fiber alignment on the overall mechanical response of the ligament. Joint space inflation was found to influence the total observed stress and strain fields, both at rest and during motion. A significant portion of the ligament was found to be in tension, even in the absence of external load. Additionally, the model's ability to account for residual strain offers a more realistic portrayal of the collagen fibers and elastin matrix's role in ligament mechanics. We conclude that (1) computational models of the lumbar facet capsular ligament should not assume that the ligament is unloaded when the joint is in its neutral position, and (2) the ligament is nearly always in tension, which may be important in terms of its long-term growth and remodeling.

Funder

National Center for Complementary and Integrative Health

National Institute of Arthritis and Musculoskeletal and Skin Diseases

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3